Inferring Descriptive Generalisations of Formal Languages

Dominik D. Freydenberger1 Daniel Reidenbach2

1Goethe University, Frankfurt

2Loughborough University, Loughborough

COLT 2010
Our goal:
Learning patterns common to a set of strings.

- **pattern**: word consisting of **terminals** \((\in \Sigma)\) and **variables** \((\in X)\)
- \(\text{Pat}_{\Sigma} := (\Sigma \cup X)^+\): set of all patterns over \(\Sigma\)
- **substitution**: terminal-preserving morphism \(\sigma : \text{Pat}_{\Sigma} \to \Sigma^*\)

 \((\forall a \in \Sigma : \sigma(a) = a)\)
- **language of a pattern** \(\alpha \in \text{Pat}_{\Sigma}\): set of all images of \(\alpha\) under substitutions (write: \(L(\alpha)\))

Example

\[
L_{\text{NE},\Sigma}(x \ a \ y \ x) = \{v \ a \ w \ v \mid v, w \in \Sigma^+\},
L_{\text{E},\Sigma}(x \ a \ y \ x) = \{v \ a \ w \ v \mid v, w \in \Sigma^*\}.
\]
The classical model

Identification in the limit of indexed families from positive data (Gold ’67)

- **Indexed family (of recursive languages):** \(\mathcal{L} = (L_i)_{i \in \mathbb{N}} \), where \(w \in L_i \) is uniformly decidable
- **Text** of a language \(L \): a total function \(t : \mathbb{N} \rightarrow \Sigma^* \) with \(\{ t(i) \mid i \in \mathbb{N} \} = L \)
- Set of all texts of \(L \): \(\text{text}(L) \)
- \(\mathcal{L} \in \text{LIM-TEXT} \) if there exists a computable function \(S \) such that, for every \(i \) and for every \(t \in \text{text}(L_i) \), \(S(t^n) \) converges to a \(j \) with \(L_j = L_i \)

- **NE-patterns** (yes, Angluin ’80)
- **E-patterns** (not if \(|\Sigma| \in \{2, 3, 4\} \), Reidenbach ’06, ’08)
- Terminal-free E-patterns (only if \(|\Sigma| \neq 2 \), Reidenbach ’06)
Inferring descriptive generalisations

Descriptive patterns

Definition

- Let \mathcal{P}_Σ be a class of pattern languages over Σ.
- A pattern δ is \mathcal{P}_Σ-descriptive of a language L if:
 1. $L(\delta) \in \mathcal{P}_\Sigma$,
 2. $L(\delta) \supseteq L$,
 3. there is no $L(\gamma) \in \mathcal{P}_\Sigma$ with $L(\delta) \supset L(\gamma) \supseteq L$.
- We write: $\delta \in D_{\mathcal{P}_\Sigma}(L)$

In other words: $L(\delta)$ is (one of) the closest generalisation(s) of L in \mathcal{P}_Σ, and δ is (one of) the best description(s) of L.

Our approach:

Learning of such generalisations.
Definition

- Let P_Σ be a class of pattern languages over Σ.
- Let L be a class of nonempty languages over Σ.
- L can be P_Σ-descriptively generalised ($L \in DG_{P_\Sigma}$) if there is a computable function S such that, for every $L \in L$ and for every $t \in \text{text}(L)$, $S(t^n)$ converges to a $\delta \in D_{P_\Sigma}(L)$.

Main conceptual differences to LIM-TEXT:

- Infer generalisations instead of exact descriptions of the languages.
- Choose hypothesis space separate from language class.

Interesting phenomenon:

- One language can have several descriptive patterns,
- One pattern can be descriptive of several languages.
Characterisation theorem (for indexed families)

Theorem

Let Σ be an alphabet, let $\mathcal{L} = (L_i)_{i \in \mathbb{N}}$ be an indexed family over Σ, and let \mathcal{P}_Σ be a class of pattern languages. $\mathcal{L} = (L_i)_{i \in \mathbb{N}} \in \text{DG}_{\mathcal{P}_\Sigma}$ if and only if there are effective procedures d and f satisfying the following conditions:

(i) For every $i \in \mathbb{N}$, there exists a $\delta_d(i) \in D_{\mathcal{P}_\Sigma}(L_i)$ such that d enumerates a sequence of patterns $d_{i,0}, d_{i,1}, d_{i,2}, \ldots$ satisfying, for all but finitely many $j \in \mathbb{N}$, $d_{i,j} = \delta_d(i)$.

(ii) For every $i \in \mathbb{N}$, f enumerates a finite set $F_i \subseteq L_i$ such that, for every $j \in \mathbb{N}$ with $F_i \subseteq L_j$, if $\delta_d(i) \not\in D_{\mathcal{P}_\Sigma}(L_j)$, then there is a $w \in L_j$ with $w \not\in L_i$.

- d is an enumeration of an appropriate subset of the hypothesis space
- f is similar to Angluin’s telltales
Remarks

- Characterisation shows significant connection to Angluin’s characterisation of indexed families in LIM-TEXT.
- Main differences:
 - our model requires an enumeration of a subset of the hypothesis space,
 - we do not need to distinguish all L_i, L_j with $L_i \neq L_j$,
 - the strategy in our proof might discard a correct hypothesis.
- Our strategy does not test membership or inclusion of pattern languages, but only membership for the indexed family.
Further topics

Further directions in our paper:

1. More general: Inductive inference with hypotheses validity relation (model HYP).
2. Less general: Consider a smaller class of patterns and a fixed strategy.
Inferring ePAT$_{tf, \Sigma}$-descriptive patterns

- ePAT$_{tf, \Sigma}$: The class of all E-pattern languages that are generated from terminalfree patterns.
- Inclusion for ePAT$_{tf, \Sigma}$ is well understood and decidable.
- Strategy Canon: For every finite set S, return the pattern $\delta \in D_{ePAT_{tf, \Sigma}} (S)$ that is minimal w.r.t. the length-lexicographical order.
- Telling set of L: A finite set $T \subseteq L$ with $D_{ePAT_{tf, \Sigma}} (T) \cap D_{ePAT_{tf, \Sigma}} (L) \neq \emptyset$.

Theorem

Let Σ be an alphabet with $|\Sigma| \geq 2$. For every language $L \subseteq \Sigma^*$, and every text $t \in \text{text}(L)$, Canon converges correctly on t if and only if L has a telling set.
Telling set languages

\(\mathcal{TSL}_\Sigma\): the class of all languages over \(\Sigma\) that have a telling set

\(\mathcal{TSL}_\Sigma \in \text{DG}_{e\text{PAT}_{tf,\Sigma}}\), using Canon as strategy

Some properties of \(\mathcal{TSL}_\Sigma\):

- contains every DTF0L language \(\Rightarrow\) superfinite
- is not countable
- does not contain all of REG
- contains all \(e\text{PAT}_{tf,\Sigma}\)-languages (if \(|\Sigma| \neq 2\))
- does not contain all \(e\text{PAT}_{tf,\Sigma}\)-languages (if \(|\Sigma| = 2\))