Evolution with Drifting Targets

Varun Kanade
(with Leslie Valiant and Jenn Wortman Vaughan)

Harvard University
Outline of Talk

Computational model for evolution

Drift and monotone evolution

Evolving hyperplanes and conjunctions

Drift-resistant and quasi-monotone evolvability
Evolution: Mutation & Natural Selection
Computational Model

Evolve to *ideal* function for *best behavior*

Mutations at every generation

The *fit* members survive to the next generation
Computational Model

Mutations

Selection

Mutations

Selection

Mutations

Selection

Ideal: f to D

r_g is close to ideal

(Valiant 2007)
Modeling Mutation

Mutator: Poly-time probabilistic Turing Machine
Takes current representation r

$$r \rightarrow \{ (m_1, q_1), \ldots, (m_p, q_p) \}$$
Generates (polynomially many) mutations and probabilities of occurrence.

Performance: Ideal function f; target distribution D.

$$\text{Perf}_D(r, f) = E_D[r(x) f(x)]$$
Beneficial & Neutral Mutations

Evolutionary algorithm gets only empirical estimates of true performances
(S - poly-size sample of examples from D)

Mutation $r \rightarrow m$ is **beneficial** if
\[
\text{Perf}_s(m, f) \geq \text{Perf}_s(r, f) + \tau
\]

Mutation $r \rightarrow m$ is **neutral** if
\[
|\text{Perf}_s(m, f) - \text{Perf}_s(r, f)| \leq \tau
\]
Selection Rules

If there exists a *beneficial* mutation one is selected at random according to probability of occurrence. Otherwise, a *neutral* mutation is selected according to probability of occurrence.

Concept class **C is evolvable under D** if for every target function \(f \in C \), and every \(\varepsilon > 0 \) an evolutionary algorithm in \(g(\varepsilon) \) generations reaches a representation \(r \) that has performance \((E_D[r(x)f(x)]) \) at least \(1 - \varepsilon \), w.p. \(\geq 1 - \varepsilon \).
Previous Work

Evolvable concepts **subclass** of SQ learnable concepts (Valiant 2007)

Evolvability of **monotone conjunctions** under uniform distribution (Valiant 2007)

Evolvability equivalent to **CSQ learning** (queries only ask for correlation with target) (Feldman 2008)

Robustness of Model: Several alternative definitions lead to the same model (Feldman 2009)
Drifting Targets

Organisms adapt to gradual changes in environment

Evolvability model should be robust to drift in ideal function

Evolutionary algorithm adapts to change in perpetuity
Modeling Drifting Targets

Distribution D

Target functions $f_1, f_2, f_3, ...$

Small drift rate $E_D[|f_i(x) - f_{i+1}(x)|] \leq \Delta$

Evolvable with Drift Δ

Start at r_0

There exists time g (polynomial) s.t. for every $i \geq g$, with probability at least $1 - \varepsilon$, $\text{Perf}_D(r_i, f_i) \geq 1 - \varepsilon$
Main Result

All **evolvable** concept classes are also evolvable with **drifting target ideal functions**
Monotonic Evolution

Representations r_1, r_2, \ldots of an evolutionary algorithm

Monotonic Evolution
Monotonic if for all i, with probability at least $1 - \varepsilon$

$$\text{Perf}_D(r_i, f) \geq \text{Perf}_D(r_{i-1}, f)$$

Strictly Monotonic Evolution (μ)
Strictly monotonic if for all i, with probability at least $1 - \varepsilon$

$$\text{Perf}_D(r_i, f) \geq \text{Perf}_D(r_{i-1}, f) + \mu$$
Beneficial Neighborhood

Neighbourhood: Set of mutations of r

Beneficial Neighborhood (μ): Neighbourhood containing at least one representation r' satisfying

$$\text{Perf}_D(r', f) \geq \text{Perf}_D(r, f) + \mu$$

Theorem: For a given concept class C, if there exists a set of representations such that there always exists a beneficial neighborhood (μ), then C is evolvable for drifting targets as long as drift $\Delta \leq \mu - 1/\text{poly}$.
Evolve Halfspaces and Conjunctions
Evolving Halfspaces

Algorithm for evolving halfspaces passing through the origin

For arbitrary distributions this is impossible (Feldman 2008)

Algorithm under symmetric distributions

Extend to product normal distributions
Evolving Hyperplanes

Mutations:
\[r \rightarrow \cos(\theta) r + \sin(\theta) e \]

\(e \) is a unit vector of an orthogonal basis of which \(r \) is a part.

Tolerates drift of \(O(\varepsilon/n) \)
Evolving Hyperplanes

Mutations:
\[r \rightarrow \cos(\theta) r + \sin(\theta) e \]

\(e \) is a unit vector of an orthogonal basis of which \(r \) is a part.

Tolerates drift of \(O(\varepsilon/n) \)
A Different Algorithm

Generalize to product normal distributions

\[(x_1, x_2) \rightarrow (x_1/\sigma_1, x_2/\sigma_2)\]

Problem: We do not know \(\sigma_1\) and \(\sigma_2\). Evolutionary algorithm never sees actual examples, only sees the performance
Evolving Halfspaces

A different algorithm – adds a small component to each direction

Somewhat similar to rotation
Evolving Conjunctions

Monotonic conjunctions under uniform distribution over \(\{0, 1\}^n \) (Valiant 2007)

Example: \(x_1 \land x_7 \land x_{13} \)

Mutations: Add a literal; drop a literal; swap a literal

Beneficial Neighborhood: \(\mu = O(\varepsilon^2) \)

Can generalize to all conjunctions (Jacobson 07)
Drift Resistance for Evolvability
Evolution with Drifting Targets

Can all evolutionary algorithms be made resistant to some drift?

Yes!

How much drift?

Small, but inverse polynomial

Can all evolutionary algorithms be made monotonic?

No, but can make quasi-monotonic
CSQ Learning

Target function: f Distribution: D

0 if $E_D[f(x) \varphi(x)] \geq \theta + \tau$
1 if $E_D[f(x) \varphi(x)] \leq \theta - \tau$
Any of 0 or 1 otherwise

This is equivalent to correlational SQ (CSQ) learning (binary search)

(Feldman 2008)
Overview of Simulation

Feldman's simulation of CSQ\(>_q\) algorithm that makes \(q\) queries of tolerance \(\tau\)

Hypothesis \(h\) output by CSQ\(>_q\) algorithm has high performance

Make drift small enough so that for \(q\) rounds of evolution answers don't change (up to tolerance)

But need evolutionary algorithm to run in perpetuity

(Feldman 2008)
Sketch of Reduction

\[(1 - \varepsilon) h + \varepsilon r\]

Technical Problem: Need representation independent of \(\varepsilon\) – this requires a special construction
Evolution with Drifting Targets

All *evolvable* concept classes are also evolvable with *drifting targets*.

All evolvable concept classes can be evolved quasi-monotonically.

Give some drift rates for *halfspaces* through origin and *conjunctions*.